
Email: Maulshree Singh 

            A00278179@student.ait.ie 

Digital Twin of Polymer Processing Pilot Line  

Maulshree Singh, Materials Research Institute, Athlone Institute of Technology (AIT), Ireland 

Rupal Srivastava, Confirm Smart Manufacturing, SFI, AIT, Ireland 

Shyh Dar Lee, Software Research Institute, AIT, Ireland 

Niall Murray, Dept. of Computer & Software Engineering, AIT, Ireland 

Yuansong Qiao, Software Research Institute, AIT, Ireland 

Declan Devine, Materials Research Institute, AIT, Ireland 

Abstract 

In the context of Industry 4.0 and digital factory, digital twin technology is emerging as a key enabling 

technology to simulate, optimize, maintain, and predict processes and production systems. Digital Twin 

(DT) refers to the virtual copy or model of any physical entity (physical twin), both interconnected via 

real-time data exchange. Conceptually, a DT mimics the state of its physical twin in real-time and vice 

versa. In AIT (Athlone Institute of Technology, Ireland), we are developing a DT of the polymer 

processing pilot line consisting of: an injection moulding machine; robotic arms; conveyor belts; and 

inspection cameras. This paper presents the DT system for smart polymer processing at AIT, including the 

components of the system and the tools used to build the system. The project focuses on developing unit-

level DTs of individual components of the pilot line and subsequently integrate these DTs to build the DT 

of the entire system. The project is in its initial stages, with the current focus on the development DT of 

the ABB IRB 1200 robotic arm (6DoF) in addition to the 3D scanner. This paper is a concept paper 

introducing the framework for developing the required DT. 

In the pilot line, when a part from the injection moulding machine is loaded onto the conveyor belt, it can 

take any orientation and can fall anywhere on the belt. The 3D scanner camera detects the orientation and 

coordinates of the part and passes the information to the robotic arm. With this information, the robotic 

arm knows how and where to pick the part from the conveyor belt. For simulating the robot in the virtual 

world, Visual Components will be used, and Robot Operating System (ROS) will be used as the primary 

framework for bi-directional communication. HALCON is used to extract data from the camera. In AIT, 

the tools we are using are state-of-the-art industrial solutions that can be employed by industry without 

many modifications. The developed DT will be used for real-time monitoring, optimization of the robotic 

arm and conveyor belt movement, and predictive maintenance. 
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1. INTRODUCTION 

The whole concept of the fourth industrial revolution or Industry 4.0 revolves around the digitalization of and 

intelligence within the manufacturing process (Vaidya, Ambad, & Bhosle, 2018). One of the key enabling 

technologies for the Industry 4.0 digital solutions is Digital Twin (DT) (Durão, Haag, Anderl, Schützer, & Zancul, 

2018; Pires, Cachada, Barbosa, Moreira, & Leitão, 2019). Although NASA was the first to introduce the concept 

of DT, in the context of the Industry 4.0 paradigm, Michael Grieves pioneered the initial efforts (Singh et al., 

2021). DT consists of three components (Figure 1): physical twin in physical space, digital twin in virtual space, 

and bi-directional data connection between two spaces (Grieves, 2014). The latter enables the DT to mimic the 

changes in the physical world. This then allows the user to plan the next steps virtually and execute them by 

sending command via DT. With a DT, the current as well as the future states of its physical twin can be displayed, 

which can be used for various purposes such as real-time monitoring, predictive maintenance, process evaluation 

and optimization, designing, asset management etc. (Liu, Fang, Dong, & Xu, 2021).   

 

DT is also one of the driving forces in Smart Manufacturing (Lu et al., 2020). In manufacturing, all products go 

through four main phases throughout their life cycle: design, manufacture, operation, and disposal (or reuse). 

Smart manufacturers can leverage DT throughout the entire product/system lifecycle by ensuring data continuity 

which not only improves the quality and service of one generation of the product but also of the next generations 

(Liu et al., 2021; Shao et al., 2019). Benefits of using DT technology in smart manufacturing include: reduced 

time to market; increased user engagement; increased visibility; ensured optimal operations; reduced 
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maintenance cost; and reduced energy consumption etc. (Aheleroff et al., 2020; Tao, Zhang, & Nee, 2019). 

However, to avail these benefits DT needs to have the following characteristics (Lee, Azamfar, Singh, & 

Siahpour, 2020): 

(i) Ubiquitous connectivity. 

(ii) Advanced analytics. 

(iii) Cooperative decision making. 

(iv) Autonomous and rapid model building and updates. 

(v) Autonomous disturbance handling and resilience control. 

With the advent of technologies such as industrial internet of things, artificial intelligence, deep and transfer 

learning, Immersive eXtended Reality, 5G, big data, blockchain etc. realization of DT in manufacturing systems 

could significantly improve (Fuller, Fan, Day, & Barlow, 2020; Lee et al., 2020; Perkis et al., 2020). According 

to Zhou et al., the next stage of smart manufacturing is going to be intelligent manufacturing which will be 

attained by knowledge-driven DT manufacturing cell that can perceive, simulate, understand, predict, optimize, 

and control strategy intelligently in order to make manufacturing more autonomous (Zhou, Zhang, Li, Ding, & 

Wang, 2020). 

 
Figure 1 Block diagram of DT 

 

It will be impossible to transfer to the next manufacturing paradigm without industrial robotics (Ermolov, 2020). 

One of the major components which is transforming industry 4.0 and smart manufacturing into fully integrated, 

automated, and optimized production flow is autonomous robotic systems (Rüßmann et al., 2015; Vaidya et al., 

2018). Growing interest for developing DT for the robotic arm is evident from the increasing number of 

publications (limited to the English language) found on Google Scholar, ScienceDirect, and Scopus containing 

the term ‘Digital Twin’ along with ‘Robotic arm’ or ‘Robot arm’ in the article title, abstract, or as keywords from 

2016 to 2020 (Figure 2). For 2021, the number of publications has already reached 240 in Google scholar as 

compared to the 282 for 2020 for the entire year (last checked 17 July 2021). 

 

Though there are a plethora of frameworks/architectures for the implementation of DT in the manufacturing 

industry, the real-life implementation is still lacking. Bambura et al. (Bambura, Šolc, Dado, & Kotek, 2020) 

demonstrated the feasibility of DT implementation in the real condition of a production plant that manufactures 

aluminium components for the automotive industry. They used the Technomatix Plant Simulation software to 

create the virtual model, PLC sensors for data acquisition, and an optimization tool to realise the complete DT. 

Barenji et al. (Vatankhah Barenji, Liu, Guo, & Li, 2020) developed DT driven framework for robotic arm based 

on the parameters of the existing physical twin for the optimization of motion planning for reducing energy 

consumption. DT of grinding process using 6DoF (Degree of Freedom) industrial robot was developed by Oyekan 

et al. (Oyekan, Farnsworth, Hutabarat, Miller, & Tiwari, 2020) for effectively removing the surface material from 

the fan-blade of an aircraft engine by exploring the required grinding force parameters needed using DT. More 

recently, Matulis-Harvey (Matulis & Harvey, 2021) utilised reinforcement learning for the realisation of a robot 

arm digital twin. They created a virtual space using Unity3D, link it with the 3D printed replica of its real-world 

robot arm and space twin, and through Tensorflow and hyperparameter tuning provide the required foundation 

or the DT architecture. Liang et al. (Liang, McGee, Menassa, & Kamat, 2020) developed a DT system for human-
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robot collaboration in the construction and digital fabrication by leveraging ROS, Gazebo, and Rviz to develop 

the digital robot module and MQTT Bridge as the communication module to connect it to the physical robot. 

Finally, V. Havard et al. (Havard, Jeanne, Lacomblez, & Baudry, 2019)  have suggested similar industrial 

workstation DTs and extend their work on human-robot interaction and collaboration. 

 

 
Figure 2 Number of DT and robotic arm related publications on Google Scholar, ScienceDirect, and Scopus by year 

 

There is a gap in the literature with respect to the DT setup of a manufacturing line where a multi-process system 

including the manufacturing and transferring, as well as the real-time image processing for product detection and 

robotic gripper actuation for the gripping mechanism are needed. Most of the work in the literature in this domain 

is limited to either only robotic arm DT or the manufacturing line DT. Vision systems/cameras in the 

manufacturing line have been implemented for burr or defect detection (Schmidt, Grandi, Peruzzini, Raffaeli, & 

Pellicciari, 2020), observations of the environment state (Matulis & Harvey, 2021) or tracking and guidance of 

material removal (Oyekan et al., 2020). An inter-linked process that is closer to a real-world situation such as 

detecting part within conveyor belt has not been explored yet. The aim of the project is to achieve synchronization 

between the states of a small manufacturing cell comprising of the robotic arm, conveyor belts and inspection 

camera and its DT with high accuracy to capture the pilot line from the injection moulding machine to the picking 

and transferring of the fabricated products from and to the conveyor belts. This architecture is envisaged to lay a 

foundation for future automation industry by determining the requirement of the environment and the machines 

required to complete the process effectively. The virtual space and the hardware setup are designed such that the 

communication and control are two-way, and the robot actuation mechanism is also controlled through the same. 

 

The paper has been divided into 3 sections. Section 1 introduced the role of DT in Industry 4.0 and smart 

manufacturing. It described few examples from the literature where DT has been implemented and identified the 

gap in the research. Section 2 gives the information regarding the setup of the pilot line at AIT which includes 

the physical components of the line (hardware), software being used, and the manufacturing process in brief and 

Section 3 details different layers of the DT and the framework for developing the DT for the project by showing 

the flow of data across different components of the pilot line. 

2. SET UP 

2.1. Hardware 

Figure 3 show the manufacturing cell in Athlone Institute of Technology (AIT), Ireland. The main part creating 

machine of the pilot line is an injection moulding machine, Arburg Allrounder 370 E ("Arburg Allrounder 370 E 

"), equipped with Kistler ComoNeo system ("ComoNeo - Process Monitoring System,") which records the cavity 

pressure during the moulding process, allowing it to document, optimise, monitor, and predict outcomes during 

the injection of the material into the mould cavity. Other components of the line include robotic arm, conveyor 

belts, and camera. 
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Figure 3 Manufacturing pilot line in AIT, Ireland 

 

The project focuses on creating DTs of individual components of the pilot line first and then bringing them 

together to develop the DT of the entire system. Thus, the project aims at three components of the line first which 

are (Figure 4): robotic arm for picking and placing parts, conveyor belt for transporting the part from one location 

to another and 3D scanning camera for inspection. The robotic arm in the line is ABB IRB 1200-7/0.7 which is 

specifically designed for manufacturing lines that use flexible robot-based automation. It is a 6-axis industrial 

robot with a payload of 7kg and 0.7m reach (ABB, 2019). PhoXi 3D Scanner S from Photoneo is being used for 

scanning the parts produced by the injection moulding machine. It uses a structured light projection to reconstruct 

the geometry of the inspected part in 3D space. It is suitable for scanning different materials, from metal to 

plastics with expectations being liquids and transparent objects etc (Photoneo, 2021b). The specifications of this 

3D scanner are in Table 1 (Photoneo, 2021a). 

 
Table 1 Product specifications of inspection camera in the pilot line 

Parameter Value 

Resolution  Up to 3.2 million 3D points 

Scanning range  384 - 520 mm 

Optimal scanning distance (sweet spot)  442 mm 

Scanning area (at sweet spot)  360 x 272 mm 

Point to point distance  0.174 mm 

Calibration accuracy (1 σ)  0.050 mm 

Scanning time  250 - 2250 ms 
 

 
Figure 4 Robotic arm(A), conveyor belt(B), and Photoneo(C) of the pilot line 

2.2 Software 

One of the most critical aspects of DT is bi-directional data flow for which ROS (Robot Operating System) 

Kinetic Kame is being used. ROS is a flexible framework for writing software for robots. It aims to simplify the 
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task of creating complex and robust robot behaviour across a wide variety of robotic platforms by providing a 

collection of tools, libraries, and conventions ("About ROS,"). For generating useful information out of the 

images captured by the inspection camera a software named HALCON is being used. HALCON is a machine 

vision software that provides a comprehensive vision library. The library comprises all types of image processing 

methods, from image acquisition to advanced shape-based matching (MVTec). The manufacturing line is being 

replicated in the virtual world using Visual Components, a 3D simulation software for manufacturing. Visual 

Components Premium 4.2.2 version is being used for creating the digital model of the manufacturing cell (Figure 

5). Since different software run optimally on different operating systems, a virtual machine is being set up so that 

Windows and Linux operating systems can work on the same system. Ubuntu 16.04, an open-source operating 

system on Linux, is best for running ROS programmes (Quigley, Gerkey, & Smart, 2015) and Windows is for 

HALCON and Visual Components. A more detailed diagram about the component relationship is presented in 

the next section. 

 

 
Figure 5 Digital simulation of the manufacturing cell developed in Visual Components 

2.3 Manufacturing Process 

Figure 6 summarizes the manufacturing process the project focuses on. The process starts with moulded parts 

made by the injection moulding machine which are transferred to the inspection system via a conveyor belt where 

it is 3D scanned by Photoneo and data related to the orientation of the part within the conveyor belt is captured. 

This data is then used to tell the robotic arm the coordinates of the part. Once the command is sent to the robotic 

arm using ROS, it picks up the part and puts it onto the next conveyor belt for further processing.  
 

 
Figure 6 Flow of product through the manufacturing line 

3. METHODOLOGY 

The DT, as discussed earlier, has three layers: Physical, Digital, and Communication (Figure 7). Our physical 

layer comprises conveyor belts, robotic arm, and camera; the digital layer has simulation build upon the CAD 

models of the individual parts; and the communication layer is for receiving and sending the data to both physical 

and digital layers. The communication layer can be seen as the information processing layer as the bidirectional 

mapping and interoperation of other two layers, physical and digital, are realized through the data interaction in 

this layer since it is responsible for storing, processing, and mapping the data (Bambura et al., 2020; Zheng, 
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Yang, & Cheng, 2019). Besides ROS and HALCON, the communication layer has an OPC UA server which is 

going to serve as a bridge between ROS framework and simulation in Visual Components since there is no 

framework available in Visual Components to connect it directly to ROS yet. 

 
Figure 7 DT mapping between layers [Adapted from (Bambura et al., 2020)] 

 

The proposed framework to develop the DT for the project is shown in Figure 8 which gives the flow of data 

across different components of the pilot line. After Photoneo captures the image of the part on the conveyor belt, 

HALCON will convert it into the data points which will be saved as a .dat or .txt file. Since HALCON software 

is being used on Windows operating system and ROS on Ubuntu, a core functionality of ROS will be set up on 

Windows which will work as a publisher for sending the data points as well as a subscriber for receiving the 

inverse kinematics of the robotic arm so that it can be replicated by the virtual one. MoveIt! package of ROS can 

be used for motion planning and inverse kinematics ("MoveIt," 2021). Inverse Kinematics is used for 

telemanipulation as it transforms the user input into the corresponding joint values for the robotic arm (Jang et 

al., 2021; Vatankhah Barenji et al., 2020). On Ubuntu, ROS subscriber will receive the data regarding the part 

orientation and will control the robotic arm accordingly. OPC UA server and ROS also have bidirectional 

communication to reflect the status of the physical robotic arm on VC and vice versa. The four main points that 

will be needed to be taken into consideration while developing the DT are precision and level of details, data 

acquisition and validation, data model, and synchronization (Kuts, Cherezova, Sarkans, & Otto, 2020). 

 

 
Figure 8 Data flow between different components of the pilot line 
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4.CONCLUSION 

Although DT technology for smart manufacturing is still in early stages and much further work is required 

(Sawant, Narwane, & Siddavatam, 2020), in this concept paper we have proposed a novel DT framework to 

simulate the behaviour of the manufacturing cell for robot gripping and transferring processes on the conveyer 

belt through real-time image processing techniques. The proposed architecture will be implemented on the 

project. The 3D scanning of the fabricated parts and the two-way communication with the robotic gripper arm 

will be established through HALCON and ROS platform, for easy and smooth detection of the parts on the 

conveyer belt. We propose Visual Components to simulate the current state of the manufacturing cell and 

synchronise them with the entire operation. We strongly believe that once the robotic arm and DT are synced 

with high accuracy, it will open doors for further research in the area such as DT technology in bringing a 

significant change in manufacturing operations and systems traditionally work. The automation industry will find 

ways to further cut down costs, work with high efficiency, and determine the life cycle of the proposed design. 

Future work will include developing algorithms for system/process optimization and predictive maintenance to 

further explore the DT and work on its high accuracy and performance in a real-time environment. 
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